43 research outputs found

    Langevin equations from experimental data: the case of rotational diffusion in granular media

    Full text link
    A model has two main aims: predicting the behavior of a physical system and understanding its nature, that is how it works, at some desired level of abstraction. A promising recent approach to model building consists in deriving a Langevin-type stochastic equation from a time series of empirical data. Even if the protocol is based upon the introduction of drift and diffusion terms in stochastic differential equations, its implementation involves subtle conceptual problems and, most importantly, requires some prior theoretical knowledge about the system. Here we apply this approach to the data obtained in a rotational granular diffusion experiment, showing the power of this method and the theoretical issues behind its limits. A crucial point emerged in the dense liquid regime, where the data reveal a complex multiscale scenario with at least one fast and one slow variable. Identifying the latter is a major problem within the Langevin derivation procedure and led us to introduce innovative ideas for its solution

    Derivation of a Langevin equation in a system with multiple scales: the case of negative temperatures

    Get PDF
    We consider the problem of building a continuous stochastic model, i.e., a Langevin or Fokker-Planck equation, through a well-controlled coarse-graining procedure. Such a method usually involves the elimination of the fast degrees of freedom of the “bath” to which the particle is coupled. Specifically, we look into the general case where the bath may be at negative temperatures, as found, for instance, in models and experiments with bounded effective kinetic energy. Here, we generalize previous studies by considering the case in which the coarse graining leads to (i) a renormalization of the potential felt by the particle, and (ii) spatially dependent viscosity and diffusivity. In addition, a particular relevant example is provided, where the bath is a spin system and a sort of phase transition takes place when going from positive to negative temperatures. A Chapman-Enskog-like expansion allows us to rigorously derive the Fokker-Planck equation from the microscopic dynamics. Our theoretical predictions show excellent agreement with numerical simulation

    The Role of Data in Model Building and Prediction: A Survey Through Examples

    Get PDF
    The goal of Science is to understand phenomena and systems in order to predict their development and gain control over them. In the scientific process of knowledge elaboration, a crucial role is played by models which, in the language of quantitative sciences, mean abstract mathematical or algorithmical representations. This short review discusses a few key examples from Physics, taken from dynamical systems theory, biophysics, and statistical mechanics, representing three paradigmatic procedures to build models and predictions from available data. In the case of dynamical systems we show how predictions can be obtained in a virtually model-free framework using the methods of analogues, and we briefly discuss other approaches based on machine learning methods. In cases where the complexity of systems is challenging, like in biophysics, we stress the necessity to include part of the empirical knowledge in the models to gain the minimal amount of realism. Finally, we consider many body systems where many (temporal or spatial) scales are at play and show how to derive from data a dimensional reduction in terms of a Langevin dynamics for their slow components

    The role of data in model building and prediction: a survey through examples

    Get PDF
    The goal of Science is to understand phenomena and systems in order to predict their development and gain control over them. In the scientific process of knowledge elaboration, a crucial role is played by models which, in the language of quantitative sciences, mean abstract mathematical or algorithmical representations. This short review discusses a few key examples from Physics, taken from dynamical systems theory, biophysics, and statistical mechanics, representing three paradigmatic procedures to build models and predictions from available data. In the case of dynamical systems we show how predictions can be obtained in a virtually model-free framework using the methods of analogues, and we briefly discuss other approaches based on machine learning methods. In cases where the complexity of systems is challenging, like in biophysics, we stress the necessity to include part of the empirical knowledge in the models to gain the minimal amount of realism. Finally, we consider many body systems where many (temporal or spatial) scales are at play-and show how to derive from data a dimensional reduction in terms of a Langevin dynamics for their slow components

    A Time-composable Operating System

    Get PDF
    Time composability is a guiding principle to the development and certification process of real-time embedded systems. Considerable efforts have been devoted to studying the role of hardware architectures - and their modern accelerating features - in enabling the hierarchical composition of the timing behaviour of software programs considered in isolation. Much less attention has been devoted to the effect of real-time Operating Systems (OS) on time composability at the application level. In fact, the very presence of the OS contributes to the variability of the execution time of the application directly and indirectly; by way of its own response time jitter and by its effect on the state retained by the processor hardware. We consider zero disturbance and steady behaviour as those characteristic properties that an operating system should exhibit, so as to be time-composable with the user applications. We assess those properties on the redesign of an ARINC compliant partitioned operating system, for use in avionics applications, and present some experimental results from a preliminary implementation of our approach within the scope of the EU FP7 PROARTIS project

    Operating System Contribution to Composable Timing Behaviour in High-Integrity Real-Time Systems

    Get PDF
    The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry

    The CONCERTO methodology for model-based development of avionics SW

    Get PDF
    20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), 22 to 26, Jun, 2015, Madrid, Spain.The development of high-integrity real-time systems, including their certification, is a demanding endeavour in terms of time, skills and effort involved. This is particularly true in application domains such as the avionics, where composable design is to be had to allow subdividing monolithic systems into components of smaller complexity, to be outsourced to developers subcontracted down the supply chain. Moreover, the increasing demand for computational power and the consequent interest in multicore HW architectures complicates system deployment. For these reasons, appropriate methodologies and tools need to be devised to help the industrial stakeholders master the overall system design complexity, while keeping manufacturing costs affordable. In this paper we present some elements of the CONCERTO platform, a toolset to support the end-to-end system development process from system modelling to analysis and validation, prior to code generation and deployment. The approach taken by CONCERTO is demonstrated for an illustrative avionics setup, however it is general enough to be applied to a number of industrial domains including the space, telecom and automotive. We finally reason about the benefits to an industrial user by comparing to similar initiatives in the research landscape

    On the non-Boltzmannian nature of quasi-stationary states in long-range interacting systems

    Full text link
    We discuss the non-Boltzmannian nature of quasi-stationary states in the Hamiltonian Mean Field (HMF) model, a paradigmatic model for long-range interacting classical many-body systems. We present a theorem excluding the Boltzmann-Gibbs exponential weight in Gibbs Γ\Gamma-space of microscopic configurations, and comment a paper recently published by Baldovin and Orlandini (2006). On the basis of the points here discussed, the ongoing debate on the possible application, within appropriate limits, of the generalized qq-statistics to long-range Hamiltonian systems remains open.Comment: 8 pages, 4 figures. New version accepted for publication in Physica

    Derivation of a Langevin equation in a system with multiple scales: the case of negative temperatures

    Full text link
    We consider the problem of building a continuous stochastic model, i.e. a Langevin or Fokker-Planck equation, through a well-controlled coarse-graining procedure. Such a method usually involves the elimination of the fast degrees of freedom of the "bath" to which the particle is coupled. Specifically, we look into the general case where the bath may be at negative temperatures, as found - for instance - in models and experiments with bounded effective kinetic energy. Here, we generalise previous studies by considering the case in which the coarse-graining leads to (i) a renormalisation of the potential felt by the particle, and (ii) spatially dependent viscosity and diffusivity. In addition, a particular relevant example is provided, where the bath is a spin system and a sort of phase transition takes place when going from positive to negative temperatures. A Chapman-Enskog-like expansion allows us to rigorously derive the Fokker-Planck equation from the microscopic dynamics. Our theoretical predictions show an excellent agrement with numerical simulations

    A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model

    Full text link
    We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microsocopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.Comment: 11 pages, 8 figures. Text and figures added, Physica A in pres
    corecore